OML Workspace Permissions

When working with Oracle Machine Learning (OML) you are creating notebooks which focus on a particular data exploration and possibly some machine learning. Despite it’s name, OML is used extensively for data discovery and data exploration.

One of the aims of using OML, or notebooks in general, is that these can be easily shared with other people either within the same team or beyond. Something to consider when sharing notebooks is what you are allowing (more...)

OML Notebooks Interpreter Bindings

When using Oracle Machine Learning notebooks, you can export and import these between different projects and different environments (from ADW to ATP).

But something to watch out for when you import a notebook into your ADW or ATP environment is to reset the Interpreter Bindings.

When you create a new OML Notebook and build it up, the various Interpreter Bindings are automatically set or turned on. But for Imported OML Notebooks they are not turned (more...)

ADW – Loading data using Object Storage

There are a number of different ways to load data into your Autonomous Data Warehouse (ADW) environment. I’ll have posts about these alternatives.

In this blog post I’ll go through the steps needed to load data using Object Storage. This might appear to have a large-ish number of steps, but once you have gone through it and have some of the parts already setup and configuration from your first time, then the second and subsequent (more...)

Machine Learning on Mobile Devices

You: What? You can’t be serious?  Machine Learning on Mobile Devices?

Me: The simple answer is ‘Yes you can!”

You: But, what about all the complex data processing, CPU or GPU, and everything else that is needed for machine learning?

Me: Yes you are correct, those things might not be needed. What’s the answer to everything in IT?

You: It Depends ?

Me: Exactly. Yes It Depends on what you are doing. In most (more...)

Oracle ADW how to loading new OML notebooks

Oracle Autonomous Database (ADW) has been out a while now and have had several, behind the scenes, improvements and new/additional features added.

If you have used the Oracle Machine Learning (OML) component of ADW you will have seen the various sample OML Notebooks that come pre-loaded. These are easy to open, use and to try out the various OML features.

Screenshot 2019-07-29 13.07.01

The above image shows the top part of the login screen for OML. To see (more...)

GoLang: Inserting records into Oracle Database using goracle

In this blog post I’ll give some examples of how to process data for inserting into a table in an Oracle Database. I’ve had some previous blog posts on how to setup and connecting to an Oracle Database, and another on retrieving data from an Oracle Database and the importance of setting the Array Fetch Size.

When manipulating data the statements can be grouped (generally) into creating new data and updating existing data.

When (more...)

GoLang: Querying records from Oracle Database using goracle

Continuing my series of blog posts on using Go Lang with Oracle, in this blog I’ll look at how to setup a query, run the query and parse the query results. I’ll give some examples that include setting up the query as a prepared statement and how to run a query and retrieve the first record returned. Another version of this last example is a query that returns one row.

Check out my previous post (more...)

Managing imbalanced Data Sets with SMOTE in Python

When working with data sets for machine learning, lots of these data sets and examples we see have approximately the same number of case records for each of the possible predicted values. In this kind of scenario we are trying to perform some kind of classification, where the machine learning model looks to build a model based on the input data set against a target variable. It is this target variable that contains the value (more...)

Embedding Transformation Data Pipeline into ML Model using Oracle Data Mining

I’ve written several blog posts about how to use the DBMS_DATA_MINING.TRANSFORM function to create various data transformations and how to apply these to your data. All of these steps can be simple enough to following and re-run in a lab environment. But the real value with data science and machine learning comes when you deploy the models into production and have the ML models scoring data as it is being produced, and your applications (more...)

Importance of setting Fetched Rows size for Database Query using Golang

When issuing queries to the database one of the challenges every developer faces is how to get the results quickly. If your queries are only returning a small number of records, eg. < 5, then you don’t really have to worry about execution time. That is unless your query is performing some complex processing, joining lots of tables, etc.

Most of the time developers are working with one or a small number of records, using (more...)

Transforming Outliers in Oracle Data Mining

In previous posts I’ve shown how to use the DBMS_DATA_MINING.TRANSFORM function to transform data is various ways including, normalization and missing data. In this post I’ll build upon these to show how to outliers can be handled.

The following example will show you how you can transform data to identify outliers and transform them. In the example, Winsorsizing transformation is performed where the outlier values are replaced by the nearest value that is not (more...)

Examples of Machine Learning with Facial Recognition

In a previous blog post I gave some examples of how facial images recognition and videos are being used in our daily lives. In this post I want to extend this with some additional examples. There are ethical issues around this and in some of these examples their usage has stopped. What is also interesting is the reaction on various social media channels about this. People don’t like it and and happen that some of (more...)